17 research outputs found

    Quantum theory from four of Hardy's axioms

    Get PDF
    In a recent paper [e-print quant-ph/0101012], Hardy has given a derivation of "quantum theory from five reasonable axioms." Here we show that Hardy's first axiom, which identifies probability with limiting frequency in an ensemble, is not necessary for his derivation. By reformulating Hardy's assumptions, and modifying a part of his proof, in terms of Bayesian probabilities, we show that his work can be easily reconciled with a Bayesian interpretation of quantum probability.Comment: 5 page

    Hypothesis elimination on a quantum computer

    Full text link
    Hypothesis elimination is a special case of Bayesian updating, where each piece of new data rules out a set of prior hypotheses. We describe how to use Grover's algorithm to perform hypothesis elimination for a class of probability distributions encoded on a register of qubits, and establish a lower bound on the required computational resources.Comment: 8 page

    Unknown Quantum States and Operations, a Bayesian View

    Full text link
    The classical de Finetti theorem provides an operational definition of the concept of an unknown probability in Bayesian probability theory, where probabilities are taken to be degrees of belief instead of objective states of nature. In this paper, we motivate and review two results that generalize de Finetti's theorem to the quantum mechanical setting: Namely a de Finetti theorem for quantum states and a de Finetti theorem for quantum operations. The quantum-state theorem, in a closely analogous fashion to the original de Finetti theorem, deals with exchangeable density-operator assignments and provides an operational definition of the concept of an "unknown quantum state" in quantum-state tomography. Similarly, the quantum-operation theorem gives an operational definition of an "unknown quantum operation" in quantum-process tomography. These results are especially important for a Bayesian interpretation of quantum mechanics, where quantum states and (at least some) quantum operations are taken to be states of belief rather than states of nature.Comment: 37 pages, 3 figures, to appear in "Quantum Estimation Theory," edited by M.G.A. Paris and J. Rehacek (Springer-Verlag, Berlin, 2004
    corecore